p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.46D4, C22⋊C8⋊1C4, (C2×C42)⋊1C4, C22.9C4≀C2, (C2×C4).28C42, (C22×C4).16Q8, C23.11(C4⋊C4), C2.C42⋊1C4, (C22×C4).118D4, C2.4(C42⋊6C4), C2.3(C4.9C42), C24.4C4.4C2, C22.11(C23⋊C4), (C23×C4).189C22, C23.34D4.2C2, C2.3(C23.9D4), C23.136(C22⋊C4), C22.34(C2.C42), (C2×C4).13(C4⋊C4), (C4×C22⋊C4).8C2, (C22×C4).145(C2×C4), (C2×C4).292(C22⋊C4), SmallGroup(128,16)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.46D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=dc=cd, f2=a, ab=ba, ac=ca, eae-1=ad=da, af=fa, bc=cb, bd=db, ebe-1=fbf-1=bcd, ce=ec, cf=fc, de=ed, df=fd, fef-1=abcde3 >
Subgroups: 272 in 113 conjugacy classes, 34 normal (24 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C42, C22⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C24, C2.C42, C2.C42, C22⋊C8, C22⋊C8, C2×C42, C2×C22⋊C4, C2×M4(2), C23×C4, C4×C22⋊C4, C23.34D4, C24.4C4, C24.46D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C4≀C2, C4.9C42, C42⋊6C4, C23.9D4, C24.46D4
(2 30)(4 32)(6 26)(8 28)(10 17)(12 19)(14 21)(16 23)
(1 15)(2 12)(3 9)(4 14)(5 11)(6 16)(7 13)(8 10)(17 28)(18 25)(19 30)(20 27)(21 32)(22 29)(23 26)(24 31)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 21 30 14)(3 31)(4 16 32 23)(6 17 26 10)(7 27)(8 12 28 19)(9 20)(11 15)(13 24)(18 22)
G:=sub<Sym(32)| (2,30)(4,32)(6,26)(8,28)(10,17)(12,19)(14,21)(16,23), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,21,30,14)(3,31)(4,16,32,23)(6,17,26,10)(7,27)(8,12,28,19)(9,20)(11,15)(13,24)(18,22)>;
G:=Group( (2,30)(4,32)(6,26)(8,28)(10,17)(12,19)(14,21)(16,23), (1,15)(2,12)(3,9)(4,14)(5,11)(6,16)(7,13)(8,10)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,21,30,14)(3,31)(4,16,32,23)(6,17,26,10)(7,27)(8,12,28,19)(9,20)(11,15)(13,24)(18,22) );
G=PermutationGroup([[(2,30),(4,32),(6,26),(8,28),(10,17),(12,19),(14,21),(16,23)], [(1,15),(2,12),(3,9),(4,14),(5,11),(6,16),(7,13),(8,10),(17,28),(18,25),(19,30),(20,27),(21,32),(22,29),(23,26),(24,31)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,21,30,14),(3,31),(4,16,32,23),(6,17,26,10),(7,27),(8,12,28,19),(9,20),(11,15),(13,24),(18,22)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 4R | 4S | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | C4≀C2 | C23⋊C4 | C4.9C42 |
kernel | C24.46D4 | C4×C22⋊C4 | C23.34D4 | C24.4C4 | C2.C42 | C22⋊C8 | C2×C42 | C22×C4 | C22×C4 | C24 | C22 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 2 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C24.46D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 4 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 4 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
11 | 7 | 0 | 0 | 0 | 0 |
10 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 13 | 11 | 13 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 2 | 2 | 4 | 0 |
0 | 0 | 2 | 1 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 10 | 1 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 8 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,4,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,16,2,0,0,0,0,0,1,0,0,0,0,0,4,16,16,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[11,10,0,0,0,0,7,6,0,0,0,0,0,0,13,0,2,2,0,0,13,0,2,1,0,0,11,0,4,4,0,0,13,4,0,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,1,16,0,0,0,0,10,0,13,0,0,0,1,0,8,4] >;
C24.46D4 in GAP, Magma, Sage, TeX
C_2^4._{46}D_4
% in TeX
G:=Group("C2^4.46D4");
// GroupNames label
G:=SmallGroup(128,16);
// by ID
G=gap.SmallGroup(128,16);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,3924]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d*c=c*d,f^2=a,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f^-1=b*c*d,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=a*b*c*d*e^3>;
// generators/relations